Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37
Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50 Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6438 -
⏫Как ускорить вычисления с массивами с помощью NumExpr
NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.
Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.
Вот как NumExpr ускоряет вычисления🔽
1️⃣Частичное выполнение в кэше
NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.
Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.
2️⃣Ускорение с помощью SIMD и VML
Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.
При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.
3️⃣Поддержка многозадачного масштабирования
NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.
Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:
import numexpr as ne import numpy as np
# Пример массивов a = np.random.random(1000000) b = np.random.random(1000000)
# Обычная операция NumPy result = np.sin(a) + np.cos(b)
⏫Как ускорить вычисления с массивами с помощью NumExpr
NumExpr — мощный инструмент для ускорения вычислений с массивами в Python, который может значительно повысить производительность при работе с большими данными и сложными математическими выражениями.
Преобразовать медленный цикл, который занимал 650 мс, в вычисление за 60 мс — это реальность с использованием NumExpr.
Вот как NumExpr ускоряет вычисления🔽
1️⃣Частичное выполнение в кэше
NumExpr избегает создания огромных временных массивов, разбивая их на части, соответствующие размеру кэша.
Эти части обрабатываются и передаются через легковесную виртуальную машину, что ускоряет выполнение и оптимизирует доступ к памяти.
2️⃣Ускорение с помощью SIMD и VML
Использование инструкций SIMD (Single Instruction, Multiple Data) позволяет обрабатывать несколько элементов данных одновременно.
При доступности NumExpr использует библиотеку Intel Math Kernel Library (MKL) для трансцендентных функций (таких как sin(), cos(), exp()), что значительно повышает производительность.
3️⃣Поддержка многозадачного масштабирования
NumExpr автоматически распределяет вычисления между всеми ядрами процессора. Это позволяет эффективно использовать мощности многозадачности, ускоряя вычисления даже при больших данных.
Для работы с NumExpr достаточно заменить стандартные операции NumPy на аналоги NumExpr:
import numexpr as ne import numpy as np
# Пример массивов a = np.random.random(1000000) b = np.random.random(1000000)
# Обычная операция NumPy result = np.sin(a) + np.cos(b)
Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”
Find Channels On Telegram?
Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.
Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from ru